
Cryptle: a secure multi-party 
Wordle clone with Enarx

By Tom Dohrmann, Richard Zak, and Nick Vidal



CryptleConfidential Computing

Cryptle Hack Challenge Exploit Walkthrough

Table of contents

01 02

03 04



Confidential 
Computing

01



“Confidential Computing protects data 
in use by performing computation in a 

hardware-based Trusted Execution 
Environment. These secure and 
isolated environments prevent 

unauthorized access or modification of 
applications and data while in use, 

thereby increasing the security 
assurances for organizations that 

manage sensitive and regulated data.”



Cryptle

02





✣ To demonstrate data encryption 
in use, where the processing of 
the data is done in a TEE, and 
only accessible to the app.

✢ To help the core team uncover 
and fix vulnerabilities in the 
Enarx project, thus increasing 
the security of the software.

Goals

SecurityAwareness



How to play?

Guess words from others
With root access on server

Guess 5-letter word
Similar to Wordle

Guess words from others
Words sent to Cryptle

Revealed only when match

Single Player Multi Player Hack Challenge



Multi Player Demo

https://docs.google.com/file/d/1_ey2kwFNIZ8P73HGiqkIlOWW5yAgHgcd/preview


Attacking Cryptle on Wasmtime

https://docs.google.com/file/d/1LRvTPrTYP5w2MLxxCBvB5OA-8k8fGU04/preview


Failing to Attack Cryptle on Enarx

https://docs.google.com/file/d/1qruB1JbGzAHyKBWuV6ohvTquta2GOu39/preview


Cryptle Hack 
Challenge

03



Participation

Should be provided with explanation

Open Source
Has to be open source

Language
May be written in any language

Documentation Responsible
Must follow responsible disclosure



Cryptle app itself
Hardware/Firmware
Attestation process

Keys for TLS

Enarx runtime
Speculative execution attacks
Timing, side-channel attacks

Breaking out of Wasm sandbox

Out of ScopePart of Scope

Scope



Process

Run as root for 15 min

Run
Bots submit words

Play
Judges evaluate

Judged
Winners get prizes 

Win



Exploit 
Walkthrough

04



What are we 
attacking?



Host-Enclave 
Communication

a short intro to sallyport on SGX







Vulnerability
The enclave code just assumes that the 

sallyport block pointer points to host 
memory.



Vulnerability
The enclave code just assumes that the 

sallyport block pointer points to host 
memory.



Conditions

Good for exploitation:

✣ No ASLR
✣ We can map arbitrary host memory
✣ Large binaries with lots of ROP gadgets in 

memory
✣ The Enarx Exec can execute regular syscalls

➢ No need to mess around with SGX

Bad for exploitation:

✣ Executing instructions located host memory 
causes a general protection fault

✣ Enarx enforces W^X
✣ We can only corrupt memory with the 

contents of a syscall



The client’s session id is echoed back by the server.

→ We can precisely corrupt up to 32 bytes.

Achieving reliable memory corruption

Source: RFC 8446



ROP Easy Mode

✣ 32 bytes is far too little for a ropchain



ROP Easy Mode

✣ 32 bytes is far too little for a ropchain
➢ The host can map a longer ROP chain 

into host memory
➢ 32 bytes is enough for a ROP chain that 

switches the stack



The Enarx Exec is a regular linux binary executing 
syscalls.

The SGX shim intercepts the syscalls and handles 
them.

→ If we corrupt the stack of the Enarx Exec we use 
syscalls in our ROP chain and rely on the SGX shim 
to forward them to the host.

→ mprotect

Making shellcode executable



1. Use vulnerability + session id trick to 
write a small intermediate ROP chain 
to the Enarx Exec’s stack

2. Switch to a different stack in host 
memory

3. Write shellcode to enclave memory
4. Execute mprotect syscall to mark the 

shellcode as executable
5. Jump to the shellcode

Final exploit



The Intel SGX shim 
communicates with the host 

through a block of host memory 
called the "sallyport block".

Exploit

When the shim wants to 
execute syscalls or other enarx 

specific commands, it writes 
the parameters to the sallyport 

block and passes control back 
to the host.

When the host enters the SGX 
enclave it passes a pointer to the 
sallyport block in the rdi register.

The bug is that the shim never 
checks that the pointer to the 
sallyport block passed in by 
the host actually points to host 
memory and not enclave 
memory.



By passing in a pointer to the 
enclave's memory the host can 

trick the shim into corrupting it's 
own memory.

Exploit

By starting a TLS handshake 
with a specially crafted 

legacy_session_id I can trick the 
shim into writing up to 32 bytes 

of our choosing.

In order to manipulate the 
passed in sallyport block pointer, 
I use ptrace to read and write to 
the host registers and memory 
and intercept host syscalls.

Intel SGX only disallows 
executing code in non-enclave 
memory but doesn't disallow 
executing on a stack in 
non-enclave memory, so this 
works perfectly.



Attacking Enarx

https://github.com/Freax13/enarx-exploit

https://docs.google.com/file/d/1F53t7JUHnnLX7L2duUrSDf5yOqYQgvy-/preview


Mitigation
Check that the passed in sallyport block 

pointer doesn’t point to enclave memory.
→ This is easy because we know the size of the 

enclave.



CREDITS: This presentation template was created by Slidesgo, including icons 
by Flaticon, and infographics & images by Freepik

Thanks!
Please star our project:

github.com/enarx/enarx

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

